Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,5-Dinitro-*N*-(tri-2-pyridylmethyl)benzamide

Katayoun Marjani, Hossein Abbastabar-Ahangar,* Leila Mohammadi, Mohsen Mousavi and Jafar Attar Gharamaleki

Faculty of Chemistry, Teacher Training University, 49 Mofateh Avenue 15614, Tehran, Iran

Correspondence e-mail: abbastabar@gmail.com

Received 20 June 2007; accepted 25 June 2007

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.001 Å; R factor = 0.037; wR factor = 0.099; data-to-parameter ratio = 19.1.

The title compound, $C_{23}H_{16}N_6O_5$, was synthesized by reaction of tri-2-pyridylmethylamine and 3,5-dinitrobenzoyl chloride. There is an intramolecular $N-H\cdots N$ hydrogen bond $[N\cdots N$ = 2.5740 (12) Å] between the amide group and one of the three pyridine rings. The crystal packing is stabilized by weak intermolecular $C-H\cdots O$ hydrogen bonds.

Related literature

For reversible O_2 binding to Cu^{I} complexes with tripodal ligands, see: Lee *et al.* (1995), Jacobson *et al.* (1988); Tyekler *et al.* (1989). For fluoride as a terminal and a bridging ligand in Cu^{II} [tris(2-pyridylmethyl)amine] complexes, see: Jacobson *et al.* (1991). For the chemistry of $LCu^{II}Cl$ complexes with a quinolyl-containing tripodal tetradentate ligand L, see: Wei *et al.* (1994).

Experimental

Crystal data $C_{23}H_{16}N_6O_5$ $M_r = 456.42$

Monoclinic, $P2_1/n$ *a* = 14.7680 (7) Å b = 8.4109 (5) Å c = 16.7738 (9) Å $\beta = 104.015 (5)^{\circ}$ $V = 2021.49 (19) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 2003) *T*_{min} = 0.970, *T*_{max} = 0.980

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.037$ 307 parameters $wR(F^2) = 0.099$ H-atom parameters constrainedS = 1.01 $\Delta \rho_{max} = 0.36$ e Å $^{-3}$ 5854 reflections $\Delta \rho_{min} = -0.27$ e Å $^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1N···N4	0.88	2.07	2.5740 (12)	115
$C16-H16A\cdotsO1^{i}$	0.95	2.34	3.2796 (13)	169
C18−H18A····O4 ⁱⁱ	0.95	2.52	3.4414 (13)	164
$C23-H23A\cdots O3^{iii}$	0.95	2.58	3.2522 (15)	128
Symmetry codes: $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}.$	(i) $-x, -y$	v + 1, -z;	(ii) $-x - \frac{1}{2}, y + \frac{1}{2}$	$, -z + \frac{1}{2};$ (iii)

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2001); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2001); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

The authors thank the Teacher Training University for financial support of this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2269).

References

- Bruker (2001). SAINT-Plus. Version 6.2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2005). APEX2. Version 1.27. Bruker AXS Inc., Madison, Wisconsin, USA.
- Jacobson, R. R., Tyeklar, Z., Farooq, A., Karlin, K. D., Liu, S. & Zubieta, J. (1988). J. Am. Chem. Soc. 110, 3690–3692.
- Jacobson, R. R., Tyeklar, Z., Karlin, K. D. & Zubieta, J. (1991). *Inorg. Chem.* **30**, 2035–2040.
- Lee, D. H., Wei, N., Murthy, N. N., Tyeklar, Z., Karlin, K. D., Kaderli, S., Jung, B. & Zuberbuhler, A. D. (1995). J. Am. Chem. Soc. 117, 12498–12513.
- Sheldrick, G. M. (2001). *SHELXTL*. Version 6.12. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (2003). SADABS. Version 2.03. Bruker AXS Inc., Madison, Wisconsin, USA.
- Tyekler, Z., Paul, P. P., Farooq, A., Karlin, K. D. & Zubieta, J. (1989). J. Am. Chem. Soc. 111, 388–389.
- Wei, N., Murthy, N. N. & Karlin, K. D. (1994). Inorg. Chem. 33, 6093-6100.

Mo $K\alpha$ radiation $\mu = 0.11 \text{ mm}^{-1}$

 $0.30 \times 0.20 \times 0.20$ mm

25445 measured reflections

5854 independent reflections

5015 reflections with $I > 2\sigma(I)$

T = 100 (2) K

 $R_{\rm int}=0.025$

Acta Cryst. (2007). E63, o3345 [doi:10.1107/S1600536807031017]

3,5-Dinitro-N-(tri-2-pyridylmethyl)benzamide

K. Marjani, H. Abbastabar-Ahangar, L. Mohammadi, M. Mousavi and J. Attar Gharamaleki

Comment

Tripodal ligands based on nitrogen heterocycles have secured an important place in inorganic chemistry. Ligands of this type reported to date can broadly be divided into two classes: those in which the arms of the tripod are connected via methylene linking groups to a teriary amine function, which is itself generally involved in coordination, and those in which the centeral linking atom does not coordinate to the metal for chemical or geometric reasons. An example of the first class is furnished by tris- (2-pyridyl-methyl) amine(tpm) and its derivatives, whose copper complexes have been extensively studied (Jacobson et al., 1988, 1991, Lee et al., 1995, Tyekler et al., 1989, Wei et al., 1994). The structure determination of the title compound, C₂₃H₁₆N₆O₅, was undertaken as part of our studies on tpm derivaties. The crystal structure of free 3,5-dinitro-*N*-(tri-pyridin-2yl-methyl)-benzamide is shown in Fig.1. The only sp^3 carbon atom in the molecule, C8, has a distorted tetrahedral geometry with bond angles range from 105.82 (7) to 115.50 (8)°. The benzamide part of the molecule is nearly laying in a plane, but three pyridine rings make angles of 15.87 (5), 70.06 (5), and 75.70 (5)° with the plane of phenyl ring, giving a propeller-type geometry. From the two nitro groups, one is almost laying in the same plane with benzamide and the other is rotated out of this plane by angle of 29.25°, because of intermolecular van der Waals repulsion between two nitro groups in the packing of molecules (Fig. 2). The main point of interest in the structure is the intramolecular hydrogen bonding between the amido hydrogen atom and one of the pyridine rings (Fig. 3), N1—H1N···N4 [N1···N4 2.5740 (12) Å]. The packing of molecules in the solid state is stabilized by C-H···O intermolecular interactions with C···O distances range from 3.2522 (15) to 3.4414 (13) Å. There are also C—H $\cdots\pi$ intermolecular interactions, with H $\cdots\pi$ distances of 3.026 and 3.046 Å which take part in stabilization of molecular packing (Fig. 4).

Experimental

To a solution of tris(2-pyridyl)methylamine (0.5 g, 1.9 mmol) and triethylamine (3.6 mmol) in THF(14 ml) was added 3,5-dinitrobenzoylchloride (0.58, 2.5 mmol). After stirring at $4-5^{\circ}$ C for 2 h, the precipitate was filtered off, washed with water and recrystallized from ethanol as title compound(I), 3,5-dinitro-*N*-(tri-pyridin-2yl-methyl)-benzamide (0.87 g, 95%). mp: 220°C; IR: 3326, 1680, 1586, 1541, 1501, 1345 cm⁻¹.

Refinement

The hydrogen atom of NH-group was localized in difference Fourier synthesis and placed in idealized position (N—H 0.89 Å). The C-bound H atoms were placed in calculated positions (C—H 0.95 Å). All H atoms were refined in riding model approximation, with $U_{iso}(H) = 1.2$ Ueq of the parent atom.

Figures

3,5-Dinitro-N-(tri-2-pyridylmethyl)benzamide

Crystal data	
$C_{23}H_{16}N_6O_5$	$F_{000} = 944$
$M_r = 456.42$	$D_{\rm x} = 1.500 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2yn	Cell parameters from 5259 reflections
a = 14.7680 (7) Å	$\theta = 2.7 - 30.0^{\circ}$
<i>b</i> = 8.4109 (5) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 16.7738 (9) Å	T = 100 (2) K
$\beta = 104.015 (5)^{\circ}$	Prism, light-brown
$V = 2021.49 (19) \text{ Å}^3$	$0.30 \times 0.20 \times 0.20 \text{ mm}$
Z = 4	

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	5854 independent reflections
Radiation source: fine-focus sealed tube	5015 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 100(2) K	$\theta_{\text{max}} = 30.0^{\circ}$
φ and ω scans	$\theta_{\min} = 1.7^{\circ}$

Absorption correction: multi-scan (SADABS; Sheldrick, 2003)	$h = -20 \rightarrow 20$
$T_{\min} = 0.970, \ T_{\max} = 0.980$	$k = -11 \rightarrow 11$
25445 measured reflections	$l = -23 \rightarrow 23$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	H-atom parameters constrained
$wR(F^2) = 0.099$	$w = 1/[\sigma^2(F_o^2) + (0.055P)^2 + 0.7P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.01	$(\Delta/\sigma)_{\rm max} < 0.001$
5854 reflections	$\Delta \rho_{max} = 0.36 \text{ e} \text{ Å}^{-3}$
307 parameters	$\Delta \rho_{min} = -0.27 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.01748 (5)	0.45777 (9)	0.20406 (4)	0.01672 (15)
O2	-0.14768 (5)	0.63598 (9)	0.50628 (5)	0.01808 (15)
O3	-0.15869 (6)	0.40284 (10)	0.55897 (5)	0.02180 (17)
O4	-0.06772 (5)	-0.06810 (9)	0.42580 (4)	0.01746 (15)
O5	0.04774 (6)	-0.02392 (9)	0.36962 (5)	0.02059 (16)
N1	-0.05234 (6)	0.67856 (9)	0.23889 (5)	0.01250 (15)
H1N	-0.0882	0.7203	0.2687	0.015*
N2	-0.13867 (6)	0.49091 (10)	0.50740 (5)	0.01297 (15)
N3	-0.01847 (6)	0.02066 (10)	0.39573 (5)	0.01351 (16)
N4	-0.14713 (6)	0.93786 (10)	0.22800 (5)	0.01410 (16)
N5	-0.17659 (6)	0.62099 (10)	0.09365 (5)	0.01511 (16)
N6	0.07998 (6)	0.89062 (12)	0.11185 (5)	0.01994 (18)
C1	-0.02372 (6)	0.52656 (11)	0.24925 (6)	0.01213 (17)
C2	-0.04297 (6)	0.44040 (11)	0.32212 (5)	0.01106 (16)
C3	-0.08127 (6)	0.51175 (11)	0.38158 (5)	0.01169 (17)

H3A	-0.0941	0.6225	0.3799	0.014*
C4	-0.10011 (6)	0.41669 (11)	0.44326 (5)	0.01135 (17)
C5	-0.08273 (6)	0.25483 (11)	0.44912 (5)	0.01207 (17)
H5A	-0.0985	0.1914	0.4906	0.014*
C6	-0.04106 (6)	0.19097 (11)	0.39097 (6)	0.01175 (17)
C7	-0.02000 (6)	0.27899 (11)	0.32824 (6)	0.01204 (17)
H7A	0.0095	0.2306	0.2900	0.014*
C8	-0.04345 (6)	0.77199 (11)	0.16808 (6)	0.01216 (17)
C9	-0.09891 (7)	0.92740 (11)	0.17038 (6)	0.01290 (17)
C10	-0.09967 (8)	1.04672 (12)	0.11226 (6)	0.01803 (19)
H10A	-0.0652	1.0353	0.0716	0.022*
C11	-0.15204 (8)	1.18218 (12)	0.11546 (7)	0.0207 (2)
H11A	-0.1532	1.2661	0.0773	0.025*
C12	-0.20278 (7)	1.19435 (12)	0.17478 (7)	0.0190 (2)
H12A	-0.2395	1.2859	0.1777	0.023*
C13	-0.19856 (7)	1.06983 (12)	0.22969 (6)	0.01668 (19)
H13A	-0.2334	1.0778	0.2703	0.020*
C14	-0.09476 (7)	0.68403 (11)	0.08846 (6)	0.01280 (17)
C15	-0.06228 (7)	0.67416 (13)	0.01756 (6)	0.0190 (2)
H15A	-0.0046	0.7217	0.0153	0.023*
C16	-0.11560 (8)	0.59356 (14)	-0.05022 (6)	0.0222 (2)
H16A	-0.0945	0.5844	-0.0992	0.027*
C17	-0.19969 (8)	0.52701 (13)	-0.04524 (6)	0.0197 (2)
H17A	-0.2376	0.4714	-0.0905	0.024*
C18	-0.22687 (7)	0.54382 (12)	0.02769 (6)	0.01676 (19)
H18A	-0.2846	0.4980	0.0312	0.020*
C19	0.06044 (7)	0.81051 (11)	0.17469 (6)	0.01321 (17)
C20	0.12964 (7)	0.76865 (12)	0.24395 (6)	0.01549 (18)
H20A	0.1139	0.7155	0.2887	0.019*
C21	0.22193 (7)	0.80587 (13)	0.24646 (6)	0.0189 (2)
H21A	0.2703	0.7764	0.2926	0.023*
C22	0.24271 (7)	0.88634 (14)	0.18117 (7)	0.0205 (2)
H22A	0.3053	0.9124	0.1811	0.025*
C23	0.16932 (8)	0.92757 (14)	0.11598 (7)	0.0225 (2)
H23A	0.1830	0.9853	0.0717	0.027*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0228 (4)	0.0149 (3)	0.0155 (3)	0.0031 (3)	0.0106 (3)	0.0018 (3)
O2	0.0229 (4)	0.0136 (3)	0.0192 (3)	0.0030 (3)	0.0080 (3)	-0.0013 (3)
O3	0.0298 (4)	0.0211 (4)	0.0198 (4)	0.0038 (3)	0.0164 (3)	0.0052 (3)
O4	0.0233 (4)	0.0122 (3)	0.0178 (3)	-0.0019 (3)	0.0068 (3)	0.0027 (3)
O5	0.0250 (4)	0.0162 (3)	0.0238 (4)	0.0062 (3)	0.0121 (3)	0.0019 (3)
N1	0.0159 (4)	0.0119 (4)	0.0115 (3)	0.0022 (3)	0.0068 (3)	0.0034 (3)
N2	0.0130 (3)	0.0148 (4)	0.0119 (3)	0.0014 (3)	0.0045 (3)	0.0005 (3)
N3	0.0185 (4)	0.0106 (3)	0.0113 (3)	0.0015 (3)	0.0033 (3)	0.0007 (3)
N4	0.0130 (4)	0.0143 (4)	0.0148 (4)	0.0011 (3)	0.0029 (3)	-0.0004 (3)

N5	0.0156 (4)	0.0138 (4)	0.0169 (4)	0.0004 (3)	0.0058 (3)	0.0006 (3)
N6	0.0169 (4)	0.0253 (5)	0.0179 (4)	-0.0031 (3)	0.0048 (3)	0.0076 (3)
C1	0.0137 (4)	0.0122 (4)	0.0109 (4)	-0.0008 (3)	0.0037 (3)	0.0016 (3)
C2	0.0117 (4)	0.0113 (4)	0.0103 (4)	-0.0003 (3)	0.0029 (3)	0.0014 (3)
C3	0.0116 (4)	0.0114 (4)	0.0119 (4)	0.0002 (3)	0.0025 (3)	0.0007 (3)
C4	0.0112 (4)	0.0128 (4)	0.0106 (4)	0.0006 (3)	0.0036 (3)	-0.0004 (3)
C5	0.0126 (4)	0.0124 (4)	0.0113 (4)	-0.0004 (3)	0.0032 (3)	0.0014 (3)
C6	0.0139 (4)	0.0087 (4)	0.0124 (4)	0.0006 (3)	0.0028 (3)	0.0008 (3)
C7	0.0132 (4)	0.0119 (4)	0.0111 (4)	-0.0002 (3)	0.0031 (3)	0.0000 (3)
C8	0.0141 (4)	0.0117 (4)	0.0117 (4)	0.0011 (3)	0.0050 (3)	0.0034 (3)
C9	0.0138 (4)	0.0120 (4)	0.0125 (4)	0.0004 (3)	0.0024 (3)	0.0009 (3)
C10	0.0229 (5)	0.0154 (4)	0.0163 (4)	0.0017 (4)	0.0057 (4)	0.0040 (4)
C11	0.0247 (5)	0.0141 (4)	0.0217 (5)	0.0027 (4)	0.0023 (4)	0.0049 (4)
C12	0.0171 (4)	0.0130 (4)	0.0241 (5)	0.0030 (3)	-0.0005 (4)	-0.0022 (4)
C13	0.0136 (4)	0.0172 (4)	0.0183 (4)	0.0013 (3)	0.0019 (3)	-0.0032 (4)
C14	0.0146 (4)	0.0116 (4)	0.0124 (4)	0.0025 (3)	0.0038 (3)	0.0025 (3)
C15	0.0176 (4)	0.0260 (5)	0.0151 (4)	-0.0003 (4)	0.0071 (4)	0.0013 (4)
C16	0.0236 (5)	0.0305 (6)	0.0134 (4)	0.0025 (4)	0.0061 (4)	-0.0009 (4)
C17	0.0208 (5)	0.0199 (5)	0.0163 (4)	0.0034 (4)	0.0005 (4)	-0.0021 (4)
C18	0.0149 (4)	0.0144 (4)	0.0202 (5)	0.0014 (3)	0.0028 (4)	0.0004 (3)
C19	0.0144 (4)	0.0126 (4)	0.0135 (4)	-0.0003 (3)	0.0051 (3)	0.0011 (3)
C20	0.0174 (4)	0.0159 (4)	0.0135 (4)	-0.0003 (3)	0.0044 (3)	0.0017 (3)
C21	0.0163 (4)	0.0206 (5)	0.0180 (5)	-0.0016 (4)	0.0008 (4)	0.0001 (4)
C22	0.0162 (4)	0.0241 (5)	0.0218 (5)	-0.0051 (4)	0.0057 (4)	-0.0002 (4)
C23	0.0194 (5)	0.0297 (6)	0.0195 (5)	-0.0068 (4)	0.0070 (4)	0.0056 (4)

Geometric parameters (Å, °)

01—C1	1.2260 (11)	C8—C9	1.5480 (13)
O2—N2	1.2271 (11)	C8—C14	1.5540 (13)
O3—N2	1.2281 (11)	C9—C10	1.3973 (13)
O4—N3	1.2323 (11)	C10-C11	1.3854 (15)
O5—N3	1.2230 (11)	C10—H10A	0.9500
N1—C1	1.3445 (12)	C11—C12	1.3867 (16)
N1—C8	1.4564 (11)	C11—H11A	0.9500
N1—H1N	0.8853	C12-C13	1.3860 (15)
N2—C4	1.4723 (12)	C12—H12A	0.9500
N3—C6	1.4686 (12)	C13—H13A	0.9500
N4—C9	1.3352 (12)	C14—C15	1.3885 (13)
N4—C13	1.3491 (13)	C15—C16	1.3924 (15)
N5—C18	1.3412 (13)	C15—H15A	0.9500
N5	1.3417 (12)	C16—C17	1.3829 (16)
N6—C19	1.3401 (12)	C16—H16A	0.9500
N6—C23	1.3407 (13)	C17—C18	1.3840 (15)
C1—C2	1.5061 (12)	C17—H17A	0.9500
C2—C3	1.3957 (12)	C18—H18A	0.9500
C2—C7	1.3971 (13)	C19—C20	1.3939 (13)
C3—C4	1.3880 (12)	C20-C21	1.3891 (14)
С3—НЗА	0.9500	C20—H20A	0.9500

C4—C5	1.3845 (13)	C21—C22	1.3836 (15)
C5—C6	1.3818 (13)	C21—H21A	0.9500
C5—H5A	0.9500	C22—C23	1.3844 (15)
C6—C7	1.3821 (12)	C22—H22A	0.9500
С7—Н7А	0.9500	C23—H23A	0.9500
C8—C19	1.5454 (13)		
C1—N1—C8	122.07 (8)	C11—C10—C9	118.28 (10)
C1—N1—H1N	121.1	C11-C10-H10A	120.9
C8—N1—H1N	115.6	С9—С10—Н10А	120.9
O2—N2—O3	124.52 (8)	C10-C11-C12	119.49 (10)
O2—N2—C4	118.04 (8)	C10-C11-H11A	120.3
O3—N2—C4	117.43 (8)	C12—C11—H11A	120.3
O5—N3—O4	124.28 (8)	C13—C12—C11	118.41 (9)
O5—N3—C6	118.05 (8)	C13—C12—H12A	120.8
O4—N3—C6	117.67 (8)	C11—C12—H12A	120.8
C9—N4—C13	118.10 (9)	N4—C13—C12	122.87 (10)
C18—N5—C14	117.72 (9)	N4—C13—H13A	118.6
C19—N6—C23	118.20 (9)	С12—С13—Н13А	118.6
01—C1—N1	123.80 (8)	N5-C14-C15	122.37 (9)
01—C1—C2	119.62 (8)	N5	113.07 (8)
N1—C1—C2	116.57 (8)	C15—C14—C8	124.53 (9)
C3—C2—C7	119.90 (8)	C14—C15—C16	118.95 (10)
C3—C2—C1	124.19 (8)	C14—C15—H15A	120.5
C7—C2—C1	115.91 (8)	С16—С15—Н15А	120.5
C4—C3—C2	118.30 (8)	C17—C16—C15	119.10 (10)
С4—С3—НЗА	120.9	C17—C16—H16A	120.4
С2—С3—НЗА	120.9	C15—C16—H16A	120.5
C5—C4—C3	123.51 (8)	C16—C17—C18	117.96 (10)
C5—C4—N2	117.57 (8)	С16—С17—Н17А	121.0
C3—C4—N2	118.90 (8)	С18—С17—Н17А	121.0
C6—C5—C4	116.02 (8)	N5-C18-C17	123.88 (10)
С6—С5—Н5А	122.0	N5-C18-H18A	118.1
С4—С5—Н5А	122.0	C17—C18—H18A	118.1
C7—C6—C5	123.36 (8)	N6—C19—C20	121.90 (9)
C7—C6—N3	118.28 (8)	N6—C19—C8	116.62 (8)
C5—C6—N3	118.35 (8)	C20—C19—C8	121.44 (8)
C6—C7—C2	118.75 (8)	C21—C20—C19	118.97 (9)
С6—С7—Н7А	120.6	C21—C20—H20A	120.5
С2—С7—Н7А	120.6	С19—С20—Н20А	120.5
N1—C8—C19	109.79 (7)	C22—C21—C20	119.36 (10)
N1—C8—C9	106.41 (7)	C22—C21—H21A	120.3
C19—C8—C9	110.08 (8)	C20—C21—H21A	120.3
N1—C8—C14	108.81 (7)	C21—C22—C23	117.80 (9)
C19—C8—C14	115.50 (8)	C21—C22—H22A	121.1
C9—C8—C14	105.82 (7)	C23—C22—H22A	121.1
N4—C9—C10	122.83 (9)	N6—C23—C22	123.72 (10)
N4—C9—C8	116.87 (8)	N6—C23—H23A	118.1
C10—C9—C8	120.26 (8)	С22—С23—Н23А	118.1

C8—N1—C1—O1	5.21 (15)	C14—C8—C9—C10	-67.74 (11)
C8—N1—C1—C2	-175.97 (8)	N4-C9-C10-C11	0.72 (15)
O1—C1—C2—C3	173.68 (9)	C8—C9—C10—C11	178.49 (9)
N1—C1—C2—C3	-5.20 (13)	C9—C10—C11—C12	-0.96 (16)
O1—C1—C2—C7	-6.32 (13)	C10-C11-C12-C13	0.53 (16)
N1-C1-C2-C7	174.81 (8)	C9—N4—C13—C12	-0.44 (14)
C7—C2—C3—C4	-3.42 (13)	C11-C12-C13-N4	0.19 (15)
C1—C2—C3—C4	176.58 (8)	C18—N5—C14—C15	1.19 (14)
C2—C3—C4—C5	0.17 (14)	C18—N5—C14—C8	179.32 (8)
C2—C3—C4—N2	178.72 (8)	N1-C8-C14-N5	41.43 (10)
O2—N2—C4—C5	174.58 (8)	C19—C8—C14—N5	165.39 (8)
O3—N2—C4—C5	-4.67 (12)	C9—C8—C14—N5	-72.57 (9)
O2—N2—C4—C3	-4.06 (13)	N1-C8-C14-C15	-140.49 (9)
O3—N2—C4—C3	176.70 (8)	C19—C8—C14—C15	-16.52 (13)
C3—C4—C5—C6	2.56 (14)	C9—C8—C14—C15	105.51 (10)
N2-C4-C5-C6	-176.01 (8)	N5-C14-C15-C16	-1.18 (15)
C4—C5—C6—C7	-2.16 (14)	C8—C14—C15—C16	-179.09 (9)
C4—C5—C6—N3	178.22 (8)	C14—C15—C16—C17	0.59 (16)
O5—N3—C6—C7	29.26 (13)	C15-C16-C17-C18	-0.09 (16)
O4—N3—C6—C7	-150.69 (9)	C14—N5—C18—C17	-0.66 (15)
O5—N3—C6—C5	-151.10 (9)	C16-C17-C18-N5	0.12 (16)
O4—N3—C6—C5	28.96 (12)	C23—N6—C19—C20	1.46 (16)
C5—C6—C7—C2	-0.95 (14)	C23—N6—C19—C8	179.27 (10)
N3—C6—C7—C2	178.68 (8)	N1-C8-C19-N6	177.27 (8)
C3—C2—C7—C6	3.80 (13)	C9—C8—C19—N6	-65.91 (11)
C1—C2—C7—C6	-176.20 (8)	C14—C8—C19—N6	53.81 (12)
C1—N1—C8—C19	-70.57 (11)	N1-C8-C19-C20	-4.91 (12)
C1—N1—C8—C9	170.33 (8)	C9—C8—C19—C20	111.91 (10)
C1—N1—C8—C14	56.72 (11)	C14—C8—C19—C20	-128.36 (9)
C13—N4—C9—C10	-0.02 (14)	N6-C19-C20-C21	-2.46 (15)
C13—N4—C9—C8	-177.86 (8)	C8—C19—C20—C21	179.83 (9)
N1—C8—C9—N4	-5.49 (11)	C19—C20—C21—C22	1.36 (15)
C19—C8—C9—N4	-124.40 (9)	C20—C21—C22—C23	0.58 (16)
C14—C8—C9—N4	110.16 (9)	C19—N6—C23—C22	0.65 (18)
N1—C8—C9—C10	176.62 (9)	C21—C22—C23—N6	-1.66 (18)
C19—C8—C9—C10	57.71 (11)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1N···N4	0.88	2.07	2.574 (1)	115
C16—H16A···O1 ⁱ	0.95	2.34	3.2796 (13)	169
C18—H18A···O4 ⁱⁱ	0.95	2.52	3.4414 (13)	164
C23—H23A···O3 ⁱⁱⁱ	0.95	2.58	3.2522 (15)	128
	. 1 /2 () . 1 /2	. 2 / 2 1 / 2		

Symmetry codes: (i) -x, -y+1, -z; (ii) -x-1/2, y+1/2, -z+1/2; (iii) x+1/2, -y+3/2, z-1/2.

